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The 6exibility of the MPS2
4 chains of KMPS4 (M 5 Ni, Pd)

was examined by performing contact mode atomic force micro-
scopy (AFM) measurements for the (001) surface of KNiPS4 and
also by performing extended HuK ckel tight binding calculations
for the [M(PS4)2]

42 entities of KMPS4. The observed AFM
images were analyzed by calculating the total electron density
plots for an isolated [NiPS4]

2 slab of the (001) surface. Our
calculations show that the PS32

4 ions are more strongly bound to
the Pd21 ions in KPdPS4 than to the Ni21 ions in KNiPS4, and
that the bonding between the PS32

4 anions and M21 (M 5 Ni, Pd)
cations is 6exible with respect to the rotational motions of the
PS32

4 anions. The AFM images recorded for the (001) surface of
KNiPS4 indicate that the PS32

4 anions on the surface undergo a
rotational relaxation when the scanning tip passes by. ( 1999
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1. INTRODUCTION

The structures of the compounds KMPS
4

(M"Ni, Pd)
(1, 2) contain the MPS

4~ chains made up of PS3~
4

tetrahedra
and M2` (d8) cations (Fig. 1a). Every M2` ion is located at
the center of a square planar unit MS

4
sharing edges with

two adjacent PS3~
4

tetrahedra, so that adjacent MS
4

units
are perpendicular to each other. These chains form layers of
MPS~

4
chains parallel to the ab-plane as shown in Figs. 1b

and 1c. The chain direction of Fig. 1b is perpendicular to
that of Fig. 1c. These two kinds of layers alternate along the
c-axis direction, and the K` ions reside between the layers
at the sites made up of eight S atoms.
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When the KMPS
4

compounds are dissolved in a polar
organic solvent such as dimethylformamide (DMF), the
MPS

4~ chains become #exible polymer chains (3, 4). In the
DMF solution of KNiPS

4
, fragmentation and rearrange-

ment take place to form trimer units [(NiPS
4
)
3
]3~. How-

ever, in the DMF solution of KPdPS
4
, this phenomenon

does not occur and the PdPS~
4

chains are maintained at
room temperature (3, 4). As demonstrated by force valence
"eld calculations (4), these observations imply that the PS3~

4
anions are more strongly bound to the Pd2~ cations than
to the Ni2` cations. Moreover, the chemical and physical
properties of the MSP~

4
chains in solution indicate that the

bending and rotational motions of the PS3~
4

anions in a
MPS~

4
chain (Figs. 2a and 2b, respectively) do not require

much energy.
The above implications can be easily veri"ed by perform-

ing molecular orbital calculations for the [M(PS
4
)
2
]4~ unit

that is formed between the M2` and two PS3~
4

ions. How-
ever, it is desirable to "nd another piece of experimental
evidence supporting the #exibility of bonding between the
M2` and the two PS3~

4
ions. Scanning tunneling and

atomic force microscopy (AFM) have shown (5, 6) that dur-
ing imaging, nonequivalent atoms of surface undergo di!er-
ent degrees of local structure relaxation under the repulsive
forces the tip exerts to the surface. The tip-force induced
surface relaxation can modify the local electronic structure
of a surface (7) and can even bring about a reversible
rearrangement of weak metal}metal bonds (8). As shown in
Fig. 1, the (001) surface of KMPS

4
consists of parallel

MPS~
4

chains in which the square planar MS
4

units are
either perpendicular or parallel to the surface. Thus, when
the (001) surface of KMPS

4
is examined by AFM, the

scanning tip might induce the rotation of the PS3~
4

anions
0022-4596/99 $30.00
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FIG. 1. Structure building blocks of KMPS
4
: (a) Two perspective

views of a MPS~
4

chain. In the lower representation, each PS3~
4

anion is
represented by a shaded tetrahedron. (b, c) Projection views of two adjacent
layers of MPS~

4
chains, where the square boxes represent a unit cell.

FIG. 2. (a) Bending and (b) rotational motions of one PS3~
4

anion in
the [M(PS

4
)
2
]4~ unit.
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on the surface if the rotational motion of the PS3~
4

anions
(Fig. 2b) does not require much energy as suggested by the
dissolution studies (3, 4). Thus, AFM images of KMPS

4
may di!er substantially than those expected for the ideal
(001) surface taken from the bulk crystal structure. In the
present work, we examine the #exibility of the MPS~

4
chains

in the solid state by studying the (001) surface of KNiPS
4

with AFM and also by performing molecular orbital calcu-
lations for the [M(PS

4
)
2
]4~ unit (M"Ni, Pd) using the

extended HuK ckel tight-binding (EHTB) method (9, 10).
2. BINDING ENERGIES AND ROTATIONAL
POTENTIALS

The [M(PS
4
)
2
]4~ (M"Ni, Pd) unit is made up of the

M2` (d8) cation and two PS3~
4

anions. Thus, the binding
energy *E of the [M(PS

4
)
2
]4~ unit can be estimated from

the energy of the [M(PS
4
)
2
]4~ unit by subtracting the

energy of the M2` cation and two PS3~
4

anions. Calcu-
lations of the *E values show that the M2` and PS3~

4
ions

are more strongly bound in [Pd(PS
4
)
2
]4~ than in

[Ni(PS
4
)
2
]4~ by 63 kJ/mol. This is consistent with the ex-

perimental observation that a fragmentation}rearrange-
ment process takes place in the DMF solution of KNiPS

4
,

but not in the DMF solution of KPdPS
4

(3, 4). Figure 3
shows the rotational potential energy curves calculated for
[M(PS

4
)
2
]4~ as a function of the rotational angle / de"ned

in Fig. 2b. The potential is soft for both [Pd(PS
4
)
2
]4~ and

[Ni(PS
4
)
2
]4~. For example, at /"403, the potential energy

increases are only 20 and 26 kJ/mol for [Ni(PS
4
)
2
]4~ and

[Pd(PS
4
)
2
]4~, respectively. Thus, the PS3~

4
anions of the

M(PS
4
)~ chains can easily rotate away from the square

planar MS
4

arrangements.

3. CHARACTERIZATION OF THE (001) SURFACE BY AFM

Contact-mode AFM measurements were made on freshly
cleaved surfaces of the mounted crystal samples of KNiPS

4
at ambient conditions using a commercial scanning probe
microscope Nanoscope III (Digital Instruments, Inc.) and



FIG. 3. Rotational potential energy curves calculated for the
[M(PS

4
)
2
]4~ unit as a function of the rotational angle /. The large empty

and small "lled circles represent M"Ni and M"Pd, respectively.

FIG. 4. o (r
0
) plots calculated for the (001) surface of KNiPS

4
. The

plots in (a), (b), and (c) refer to the (03, 03)-, (03, 453)-, and (453, 453)-struc-
tures, respectively (see the text). The values of the contour lines are 0.04,
0.07, 0.11, 0.15, and 0.19 electrons/au3, and the circles represent the highest-
lying S atoms.
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commercial cantilevers with Si
3
N

4
tips. Atomic-scale im-

ages were recorded in the height imaging mode. To observe
image contrast, it was necessary to use a weak cantilever
with long and thin arms as well as low set-point forces
(about 20 nN). Use of higher forces resulted in a poor image
quality or even the loss of any image contrast. Images
corresponding to the surface slab of K` cations were not
observed, and this is due most probably to the mechanical
instability of such a layer.

AFM images of a surface are well described by the total
electron density plot o (r

0
) calculated for the surface (5). To

simulate the o (r
0
) plot for the (001) surface of KNiPS

4
, we

use a single layer of NiPS
4~ chains taken from the bulk

crystal structure of KNiPS
4
. The o (r

0
) plots were calculated

using the EHTB method (9}11) with the tip placed at 0.5 As
above the highest-lying atoms of the sample surface (i.e.,
r
0
"0.5 As ). The essential features of these plots do not

depend on r
0
.

Figure 4a shows the o (r
0
) plot calculated for a single layer

of NiPS~
4

chains taken from the bulk crystal structure of
KNiPS

4
. In this layer, the arrangements of the PS3~

4
anions

were kept as in the bulk crystal structure of KNiPS
4

(see
Fig. 1b). The surface represented by this layer is an unre-
laxed one and will be referred to as the (03, 03)-structure (see
below). As expected from the topography of this unrelaxed
surface, the high electron density (HED) spots of the o(r

0
)

plot correspond to the highest-lying S atom of each PS3~
4

anion. Thus, if no surface relaxation takes place during
AFM measurements, there should be two equally bright
spots per unit cell in the AFM images recorded for the (001)
surface of KNiPS

4
. However, the observed AFM images

di!er from this picture, as will be discussed below.
Figure 5a shows a representative AFM image recorded
for the (001) surface of KNiPS

4
. To emphasize the periodic

features of this image, a zoomed part of this image was
"ltered using the fast Fourier transform procedure as pre-
sented in Fig. 5b. This image shows one bright and three
less bright spots per unit cell. The distance between the
brightest spots are 9.1 As , which compare well with the
corresponding value (i.e., 8.2538 As ) determined from the
crystal structure within the typical experimental error of
10% in AFM measurements. The distances from the
brightest to the less bright spots are about 4.1 and 3.6 As
from the image, which correspond to 3.7 and 3.2 As , respec-
tively, when scaled down by the factor of 8.3/9.1. The dis-
tance of 3.7 As is comparable in length to the longest S2S
distance (3.548 As ) found within a PS3~

4
anion. Likewise, the

distance of 3.2 As is comparable in length to the shortest
S2S distance (3.177 As ) between two adjacent PS3~

4
anions

(i.e., one S2S side of the NiS
4

square).
To explain why the observed AFM images of KNiPS

4
exhibit more than two bright spots per unit cell, we suppose
that the PS3~

4
anions undergo a rotational motion around

the chain axis in order to reduce the tip-sample repulsive
interaction associated with the higher-lying sulfur atoms.
When a PS3~

4
anion undergoes a rotation from the unre-

laxed structure, the highest-lying S atom is lowered in
height. At the same time, the rotation raises the height of
one of the two S atoms lying in the NiS

4
plane parallel to the



FIG. 5. Representative AFM height images recorded for the (001)
surface of KNiPS

4
with the scan rate of 20.35 Hz. (a) Un"ltered image.

(b) Filtered image. The contrast variation covers from 0.0 to 1.0 nm.
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(001) surface (see Fig. 1a). When a PS3~
4

anion is rotated by
453, its highest-lying two S atoms have the same height. For
simplicity, we will consider two extreme cases of the PS3~

4
anion rotation. In one case every second PS3~

4
anion of each

NiPS
4~ chain is rotated by 453, and the resulting layer of

NiPS
4~ chains will be referred to as the (03, 453)-structure. In
the other case, every PS3~
4

anion of each NiPS
4~ chain is

rotated by 453, and the resulting layer of NiPS
4~ chains will

be referred to as the (453, 453)-structure, in which the Ni
atoms remain in square-planar environments. Figures 4b
and 4c show the o (r

0
) plots calculated for the (03, 453)- and

the (453, 453)-structures, respectively. These plots show that
depending on the extent of the rotation, each PS3~

4
anion

can contribute two HED spots.
When the angle of rotation is less than 453, two complica-

tions arise. First, the two highest-lying S atoms of PS3~
4

are
unequal in heights so that their HED spots will have un-
equal densities. Second, the lateral positions of these un-
equal HED spots depend on the sense of the rotational
direction (e.g., #303 vs !303). AFM measurements involve
a large tip-sample contact area (5), and the sense and the
magnitude of rotation may not be the same for all the PS3~

4
anions in the tip-sample contact area. Therefore, the ob-
served AFM images should represent an average of all these
complex contributions. Our assumption that the PS3~

4
ions

on the (001) surface undergo a rotational relaxation pro-
vides a natural explanation for why the observed AFM
image shows more than two bright spots per unit cell.

4. CONCLUDING REMARKS

Our calculations show that the PS3~
4

ions are more
strongly bound to the Pd2` ions in KPdPS

4
than to the

Ni2` ions KNiPS
4
, in support of the observation of the

dissolution studies (3, 4). Furthermore, our calculations
show soft potential curves for the rotation of the PS3~

4
anions around the MPS

4~ chain axis. Thus, during AFM
imaging, the PS3~

4
anions are expected to undergo a rota-

tional relaxation to reduce the tip-sample repulsive inter-
action associated with the higher-lying sulfur atoms. In
agreement with this expectation, the AFM images recorded
for the (001) surface of KNiPS

4
exhibit a brightness pattern

di!erent than the one expected for the unreconstructed (001)
surface. This provides a strong support for the observation
of the dissolution studies (3, 4) that the MPS

4~ chains of the
compounds KMPS

4
(M"Ni, Pd) are #exible.
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